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Abstract

We report the results of a search for the standard model Higgs boson, in which either the
Higgs boson is produced together with a W or Z boson (associated production, pp̄ → W/ZH),
or produced via the fusion of two W or Z bosons (vector boson fusion, pp̄ → qqH). The decay
channels considered in this analysis are that the W and Z bosons in the associated production
decay hadronically, and the Higgs boson decays into a bb̄ pair. The final state signature consists of
four or more jets, with at least two b-jets. The search is performed on 9.45 fb−1 of data recorded
at CDF. The data are in agreement with the background model and we set 95% confidence limits
on the Higgs production as function of the Higgs mass.
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1 Introduction

The Higgs boson plays a central role in the standard model (SM) as it endows particles with mass.
Most Higgs searches at CDF focus on final state combinations of leptons, jets and missing energy
which help to reduce the background. However the Higgs signal yield is also small. This analysis
considers the all-hadronic final state which has the largest signal yield. But the challenge is to reduce
and accurately model the overwhelming QCD multijet background.

We search for a Higgs boson decaying to a pair of bottom-quark jets ( bb̄ ) accompanied by two
additional quark jets (qq′) for Higgs masses 100 ≤ mH ≤ 150 GeV/c2. The search is most sensitive
to a Higgs boson with mass < 135 GeV/c2 where the Higgs boson decay to bb̄ is dominant [1]. The
two production channels studied in this search are the associated production and vector boson fusion
(VBF). The associated production, pp̄ → V H → qq′ + bb̄, where V is a W/Z vector boson which
decays to a pair of quarks. The VBF channel, pp̄ → qq′H → qq′ + bb̄, where incoming partons each
radiate a V and fuse to form a Higgs boson. Both production processes are illustrated in Fig. 1.

This note describes the third iteration of the all-hadronic Higgs search using 9.45 fb−1 of pp̄
collision data at

√
s = 1.96 TeV recorded by the CDF detector. Articles on the previous 2 fb−1 and

4 fb−1 search can be found at [2] [3] and references therein. The improvements, with respect to the
previous version are: all CDF Run-II data is analyzed (9.45 fb−1 ), the b-jet resolution is improved,
the acceptance for Higgs bosons has increased, the QCD multijet background modelling has improved
and an improved neural network (NN) to separate QCD from Higgs.

CDF is a general-purpose detector that is described in detail in reference [4]. The components
relevant to this analysis are briefly described here. The charged-particle tracking system is closest
to the beam pipe, and consists of a multi-layer silicon detectors (SVX) [5] and a large open-cell
drift chamber covering the pseudorapidity region |η| < 1 [6]. The silicon detectors allow a precise
measurement of a track’s impact parameter with respect to the primary vertex in the plane transverse
to the beam direction. The CDF central tracking region covers the pseudorapidity region |η| ≤ 1
and is used to reconstruct charged particle momenta and the collision vertex. The tracking system
is enclosed in a superconducting solenoid, which in turn is surrounded by a calorimeter. The CDF
calorimeter system is organized into electromagnetic and hadronic sections segmented in a projective
tower geometry, and covers the region |η| < 3.6. The electromagnetic calorimeters utilize a lead-
scintillator sampling technology, whereas the hadron calorimeters use iron-scintillator technology. The
central muon-detection system is located outside of the calorimeter and covers the range |η| < 1.

(a) Production and decay mode of the W/ZH →
bb̄qq channel

(b) Higgs boson production via vector boson fu-
sion process.

Figure 1: Feynman diagrams for the two Higgs production channels studied in this analysis: Associated
Vector Boson Production & Vector Boson Fusion.
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2 Data Sample, Event Selections and Backgrounds

The data for this analysis were collected by CDF’s multi-jet triggers. They were designed to select
events with multiple high ET jets with large Sum-Et, which is the characteristic of an all-hadronic
Higgs event. The first 3.0 fb−1 of CDF data were collected by a multi-jet trigger that requires at least
four jets with ET > 15 GeV and Sum-Et> 175 GeV. The remaining 6.45 fb−1 data was collected by
another trigger that requires at least three jets with ET > 20 GeV and Sum-Et> 130 GeV. The latter
trigger increase the acceptance for low mass Higgs boson events.

2.1 Initial PreTag Selection

The events selected for the analysis have to pass the selection criteria defined below.

• The event must pass the multijet trigger

• The detector components essential to the analysis are operating and producing good data during
the data taking period.

• The event’s reconstructed primary vertex to be in the luminous region (|VZ | < 60 cm, where VZ

is the Z position of the reconstructed primary vertex along the beam axis.

• The missing transverse energy significance 3 must be less than 6.

• The event should have at least four or five jets with ET > 15 GeV and within the pseudorapidity
region |η| < 2.4. Jets are reconstructed from the calorimeter towers using a cone algorithm with

fixed radius ∆R ≡
√

∆η2 + ∆φ2 = 0.4 in η−φ space [7]. The jet ET measurements are corrected
for detector effects [8].

• The jets passing the event selection are ordered by descending b-jet corrected 4 ET and any
fifth jet is no longer used.

• The scalar ET sum of the four leading jets (SumEt) > 220 GeV/c2

We search for b jets in events passing the initial PreTag selection. A b jet is identified by its
displaced vertex as defined by the SecVtx algorithm [9], or by using the probability that the tracks
within the jet are inconsistent with originating from the primary pp̄ collision as defined by the Jet-

Prob algorithm [10]. Jets which are tagged by both algorithms, SecVtx takes precedence as it has
a lower mistag rate.

The signal/background ratio is enhanced by dividing the data into two non-overlapping b-tagging
categories:

• SS: Exactly two jets are tagged by SecVtx

• SJ: Exactly one jet is tagged by SecVtx and exactly one jet is tagged by JetProb.

The jets from the events which satisfy either b-tagging category are labelled as b1, b2, q1, q2 where

b(q) is the tagged(untagged) jet and E
b1/q1

T > E
b2/q2

T .
Events with exactly one SecVtx tagged jet are used in the QCD background prediction model:

• events with exactly 1 SecVtx tagged jet are used to predict QCD background for SS events

• events with exactly 1 SecVtx tagged jet and zero JetProb tagged jets are sed to predict the
QCD background for SJ events.

Further details on the multijet QCD background are available in section 5.
Events with zero b-tagged tagged or at least 3 b-tagged jets are not used in the analysis and are

discarded.
3MET significance = MET/

√
Total Transverse Energy

4b-jet energy correction is described in section 3
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(b) mqq distribution (c) Higgs Signal Region

Figure 2: mbb and mqq distributions for mH =120 GeV/c2. These distributions are used to define
the Higgs signal region.

2.2 Signal Regions for the Analysis

The signal region is defined by the mass of the two b-tagged jets ( mbb ) and two untagged jets ( mqq

). The range for mbb is defined by the mass of the Higgs bosons we are searching for. The mqq range
has a resonance from the W/Z vector decay from the associated production mode. The VBF mode
has no mqq resonance. However the q-jets from VBF tend to be produced with large separation in η
which gives an effective large broad mqq mass (Fig. 2). The Higgs signal range is defined as:

• 75GeV/c2 < mbb < 175GeV/c2

• mqq > 50GeV/c2

2.3 Background and Signal

The backgrounds that have a similar final state signature as the all hadronic Higgs signal are QCD
multi-jet production, top quark pair production, single top quark production, W → qq plus bb̄/cc̄ jets
production, Z → bb̄/cc̄ plus jets production, and diboson productions (WW , WZ, ZZ). 98% of the
total background are from QCD multi-jet production, making the dominant background source. Its
contribution is estimated from a data driven based technique, which is described in section 5. The
non-QCD backgrounds are estimated from Monte-Carlo (MC) simulation. The W plus heavy-flavor
jets production is simulated with the alpgen [11] generator to simulate the W boson plus parton
production, with pythia [12] used to model parton showers. The other non-QCD backgrounds and
the SM Higgs signal samples were simulated with the pythia generator. All the non-QCD background
samples are generated using the cteq5l PDFs [13].

2.4 Expected Signal and Backgrounds

The number of signal and background events which are used in the analysis, after passing the trigger
and event selection, are given in tables 1 and 2.
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Table 1: CDF Run II Preliminary 9.45fb−1 Expected number of signal events which pass the trigger,
event selection have two b-tags (SecVtx-SecVtx (SS) or SecVtx-JetProb (SJ)).

Signal Region WH ZH VBF Total
Higgs Mass (GeV/c2) SS SJ SS SJ SS SJ SS SJ
100 17.8 6.4 13.8 4.4 10.2 3.4 41.8 14.2
105 16.7 6.1 12.9 4.1 9.9 3.5 39.5 13.7
110 15.5 5.6 12.5 4.1 10.0 3.4 38.0 13.1
115 14.3 5.2 11.1 3.6 9.3 3.3 34.7 12.1
120 13.0 4.6 9.9 3.2 8.8 3.0 31.7 10.8
125 10.9 3.8 8.3 2.7 7.8 2.6 27.0 9.1
130 9.0 3.1 6.8 2.2 6.6 2.3 22.4 7.6
135 7.0 2.5 5.3 1.7 5.5 1.8 17.8 6.0
140 5.1 1.8 3.9 1.3 4.2 1.5 13.2 4.6
145 3.5 1.2 2.6 0.9 3.0 1.0 9.1 3.1
150 2.2 0.8 1.7 0.6 2.0 0.7 5.9 2.1

Table 2: CDF Run II Preliminary, 9.45fb−1 Expected number of background and signal (MH120)
events which pass the trigger, event selection have two b-tags (SecVtx-SecVtx (SS) or SecVtx-JetProb
(SJ)). The number QCD events is defined to be Data - total non-QCD

Signal Region
Backgrounds SS SJ
tt̄ 1032.2 ± 155.9 383.9 ± 56.8
Single Top S channel 110.5 ± 18.5 37.8 ± 6.2
Single Top T channel 44.0 ± 7.3 25.5 ± 4.2
W+bb̄ 77.0 ± 40.0 28.5 ± 14.8
W+cc̄ 8.3 ± 4.3 7.4 ± 3.6
Z(→ bb̄/cc̄)+jets 872.6 ± 452.0 337.6 ± 174.5
WW 5.6 ± 0.8 5.6 ± 0.8
WZ 19.7 ± 2.9 7.9 ± 1.1
ZZ 21.4 ± 3.1 7.9 ± 1.1
total non-QCD 2191.3 ± 480.3 842.1 ± 184.3

Data 87272 46818
QCD* 85080.7 45975.9

Higgs signal (120GeV) 31.7 ± 4.7 10.8 ± 1.6
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3 bjet energy Neural Network correction

The di-jet invariant mass has a straight correlation to jet energy measurement and to optimize the
di-jet mass we need to improve the resolution of jet energy measurement. These improvements will
help to improve other parts of the analysis, such as the QCD modeling and jet shaping; both depend
on the jet-ET . A Neural Network (NN) is trained to correct the measured b-jet energy to the b-parton
energy.

The choice of the variables to train the NN carry information of the jet energy. Two different NN
were trained using SecVtxTag and JetProb events and two sets of variables was identified for them.
All energies are corrected for detector effects [8]. We had 9 variables for SecVtxTag events:

• the Jet Et,

• the Jet Pt,

• the Jet Raw Et,

• the transverse mass5,

• the decay length of the jet in 2-dim and its uncertainty,

• the Pt of secondary vertex,

• the maximum Pt of the track inside the jet cone,

• the sum of all tracks inside the jet cone,

and 6 variables for JetProb events:

• the Jet Et,

• the Jet Pt,

• the Jet Raw Et,

• the transverse mass,

• the decay length of the jet in 2-dim and its uncertainty.

The NN was trained with b tagged jets matched to b-partons. The match criteria is defined as ∆R
between the b-jet and the b-parton is ≤ 0.4.

The NN correction function is trained to estimate the ratio between the energy of b-parton and the
b-jet. We started to train, for each sample (VBF, WH and ZH), a dedicated NN. After the training
we compared the resolution for each mass before and after the NN correction.

For each mass point, the resolution is define as the ratio between the RMS and the mean value
of its own Mbb distribution; the values of these two parameter are calculated with a gaussian fit in a
range of 2σ around the mean value. This operation is iterated ten times.

To identify the best NN performance, we applied to each sample the others NN. We obtained the
best performance with the VBF NN, so we decided to use that one for the analysis (fig. 3).

Figure 4 shows the comparison of mass distribution before and after NN correction; we have an
improvement of value of Mbb, the mean value shift to ∼ 124GeV/c2, the RMS value reduces by 5−6%
and the resolution increase by ∼ 12 − 13%.

5The jet transverse mass is define as Pt/P ∗ M .
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4 Jet Width

The untagged q-jets from QCD are a mixture of quark and gluon jets whereas the q jets from the
Higgs signal are quark jets. On average, gluon jets tend to be broader than quark jets. Thus the
width of a jet can be used to discriminate quarks from gluons and so improve the separation of the
QCD multijet background from the Higgs signal. The definitions of the jet width measured by the
calorimeter (〈R〉CAL) and tracker (〈R〉TRK) are given in equation 1.

〈R〉CAL =

√

√

√

√

∑

towers

[

Etower
t

Ejet
t

(

∆R(tower, jet)
)2

]

(1a)

〈R〉TRK =

√

√

√

√

∑

tracks

[

P track
t

P jet
t

(

∆R(track, jet)
)2

]

(1b)

where
∆R(tower, jet) ≡

√

(tower η − jet η)2 + ∆φ(tower φ, jet φ)2 (2a)

∆R(track, jet) ≡
√

(track η − jet η)2 + ∆φ(track φ, jet φ)2 (2b)

and ∆φ(tower/track φ, jet φ) is smallest angular difference between tower/tack φ and jet φ. All
calorimeter towers inside the jet cone of ∆R < 0.4 are used in the 〈R〉CAL calculation. All tracks
within the jet cone of ∆R < 0.4 are selected for 〈R〉TRK

The jet-width depends not only on the parton initiating the jet but also varies with jet kinematics
and detector effects. A neural network is trained to parameterise the jet width as a function of
these jet kinematic and detector variables. The calorimeter jet-width is parameterised by two neural
network functions: one for the central calorimeter (|η| ≤ 1.1) and another for the forward calorimeter
(|η| > 1.0)). Each calorimeter neural network function parameterises the jet width as a function
of jet- ET , jet-η and number of reconstructed vertices (NVtx). The tracker measured jet width is
parameterised by one neural network as a function of jet- ET . A separate neural network is trained
for data and MC.

The neural network is trained on a sample of light-flavored (untagged) jets from MC and data
using jets from the hadronic W boson decay from tt̄ → bb̄lνqq. These events are used as one can
extract a pure sample of tt̄ → bb̄lνqq from data and the leading untagged jet pair whose mass is
MW ± 30 GeV/c2 are assumed to be jets from a W boson decay and so are light flavored.

The neural network parameterisations of the jet-width are used to remove the jet-kinematic and de-
tector dependencies by rescaling the measured jet-width to a common reference of jet- ET =50 GeV/c2,
jet-η=0, and NVtx=1. Equation 3 demonstrates how the jet-widths are rescaled.

〈R〉Data′
CAL = 〈R〉Data

CAL × 〈R〉Ref
CAL

fData
CAL (jet- ET , jet-η,NVtx)

(3a)

〈R〉MC′

CAL = 〈R〉MC
CAL × 〈R〉Ref

CAL

fMC
CAL(jet- ET , jet-η,NVtx)

(3b)

〈R〉Data′
TRK = 〈R〉Data

TRK × 〈R〉Ref
TRK

fData
TRK (jet- ET )

(3c)

〈R〉MC′

TRK = 〈R〉MC
CAL × 〈R〉Ref

TRK

fMC
TRK(jet- ET )

(3d)

〈R〉Ref
CAL and 〈R〉Ref

TRK are the data common reference jet-width for the calorimeter and tracker mea-
sured jet-width, respectively. The MC uses the same reference values as this ensures the MC measures

the same jet-width as data. The function f
Data/MC
CAL (jet- ET , jet-η,NVtx) is the data/MC jet width
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parameterization and fMC
TRK(jet- ET ) is the NN data/MC jet width paramerization. After rescaling

the measured jet-widths, any difference in the jet-width can now be assumed to be due to the type of
parton (quark or gluon) initiating the jet.

After these described corrections are applied, the MC has a systematic uncertainty of ±2.6%(5.5%)
for the calorimeter(tracker) measured jet-width.
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(a) TRF Principal: The red-line corresponds to the 1-
tag distribution which is ≈100% background. The 2-
tag background is assumed to be a scaled version of the
1-tag (background) distribution (blue line). The TRF
is derived from the regions outside the signal peak.

(b) Mbb-Mqq plane to define the TAG (brown) and
CTRL (blue) regions.

Figure 5: The Tag-Rate function and the mbb - mqq plane

5 QCD Multi-jet Background Prediction

The critical component to this analysis is an accurate prediction of the QCD background as it
is the dominant background. In this analysis a data driven model was devised to predict the two-
tagged background from the background-rich one-tagged data. The assumption is that the two-tagged
background distribution is a scaled replica of the one-tagged distribution (figure 5). The scale factor
which deduced from the one-tag data is a multi- dimensional function, called the Tag Rate Function
(TRF). The TRF is the probability of a jet being b-tagged in the event that already has one other jet
tagged as a b-jet. The probability is measured in a kinematic region that has very little contribution
from the Higgs signal, the TAG region. This is applied to the one tagged events in the signal region
to predict the double b-tagged QCD background. As a systematic, another TRF is derived from
the control (CTRL) region. This is also applied to the 1-Tag data in the signal region to give an
alternative background prediction. The difference of these two background predictions is applied as a
systematic error.

The key issue of this method is to make sure that the technique can correctly predict the shapes
of the kinematic distributions of the double b-tagged QCD multi-jet events which will be used later
in the NN training to separate the Higgs signal from the QCD background. This TRF method does
not necessary predict the right normalization of the double b-tagged QCD background.

The TRF is parameterised as a function of three parameters which are:

• ∆R of Tag-Probe jet pair

• ET of the Probe jet

• pseudorapidity of the Probe jet (|η|)

TRF (∆ηbb, Et, |η|) =
Number of 2 − Tag events(∆ηbb, Et, |η|)

Number of events with ≥ 1 tight SecVtx tagged jet(∆ηbb, Et, |η|)
(4)

The TRFs are measured separately for SS and SJ double b-tagged categories. For the SJ category,
events with only one tight SecVtx tagged jets are considered in the measurement of the TRF(SJ).
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The data used to derive the TRFs come from examining data outside the signal region (figure 5) in
the M(bb)-M(qq) plane. The signal region is defined by 75 < M(bb) < 175 GeV/c2 and M(qq) > 50
GeV/c2 mass window. Two regions outside the signal region are defined:

• CTRL region: an open-surrounding area around the signal region; 70 < M(bb) < 200 GeV/c2

and M(qq) > 45 GeV/c2, except the signal region.

• TAG region: an open-surrounding area around the CTRL region; 65 < M(bb) < 250 GeV/c2

and M(qq) > 40 GeV/c2, except the CTRL region and signal region.

The default TRF uses data from the TAG region. The CTRL region is used to derive systematic
errors (figure 5). In the TRF deriving the contribution of tt̄ and Z plus jets are subtracted.

If a variable shows power in discriminating the background but is not well modeled by the TRF,
it is not used in the analysis. Variable like M(qq), although not very well described by the raw TRF,
with fine tuning on the TRF based on correction function obtained in the TAG region it can be used
eventually. This is discussed in the next section.

5.1 Tuning the Modeling of the Mass M(qq)

The TRF generated via this method does predict well the shapes of various kinematic variables
except a few. Two variables are not very well described but important to this analysis are M(bb) and
M(qq). Possible reasons for the miss matching are the following. The ratio of 2 b tagged over 1 b
tagged events is assumed to be flat. This assumption is true in large scale but not quite so in local
area in the M(bb), M(qq) phase space. The other reason is that while developing the TRF both 1 b
tagged and 2 b tagged events contribute to the denominator . While in predicting 2 b events in the
signal region only 1 b tagged events are used. This creates slightly inconsistency in the composition
of the denominator. These are limitations of the method. We can only choose the variables that well
described to proceed with the analysis so we need to correct for M(qq) and hopefully the M(bb) shape
will follow.

To correct for M(qq), we measure the correction function by applying the TRF to the one tagged
events in the TAG region and measure the ratio of the predicted double b-tagged events to the observed
b-tagged events as a function of the mass M(qq). The correction function is then applied in the signal
region when we are predicting the double b-tagged events in the signal region. As a systematic check,
we also measured another correction function for M(qq) in the CONTROL region and apply the
correction function in predicting the 2 b-tagged events, in the signal region, while using the TRF
from the CONTROL region. The difference in the predictions between using the TRF’s (with their
corresponding correction function) measured from the TAG region and from the CONTROL region
is part of the source of systematic uncertainty of the modeling.

After the fine tuning based on M(qq) the kinematic distributions of the predicted double b-tagged
events in the signal region are compared to the observed double b-tagged events. Figure 6 shows the
distributions of M(bb), M(qq) and cosθ3 as examples from SS channel. The corresponding distributions
from SJ channel are shown in Figure 7. Not all variables can be well described as shown.
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Figure 6: The kinematic distributions of the predicted double b-tagged events in the signal region are
compared to the observed double b-tagged events for the SS category. The left side plot shows the
invariant mass of the two b tagged jets system, M(bb). The middle plot shows the invariant mass
of the two not b tagged jets system, M(qq). The right side plot shows the cosθ3 The red hashed
histograms are the predicted double b-tagged events, and the black points are the observed double
b-tagged events.

Figure 7: The kinematic distributions of the predicted double b-tagged events in the signal region are
compared to the observed double b-tagged events for the SJ category. The left side plot shows the
invariant mass of the two b tagged jets system, M(bb). The middle plot shows the invariant mass
of the two not b tagged jets system, M(qq). The right side plot shows the cosθ3 The red hashed
histograms are the predicted double b-tagged events, and the black points are the observed double
b-tagged events.
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Figure 8: The performance of YC ZH (shown in the plot (a)) and YC WH (shown in the plot (b).

6 Untagged Jets Neural Network

In the association production of Higgs particle there are light quark pairs from Z, W decay or through
vector boson fusion, VBF. These light quark pairs have special features that can be used to help
discriminate the QCD background thus help the search of Higgs particle. So we train special Neural
Networks to identify light quark pairs in the association production of Higgs particle event. Below we
describe the features of the light quark pairs and how the Neural Networks are trained.

The variables used are M(qq), dφ and dη, dR(qq), Ptq, where M(qq) is the invariant mass of the
two light quarks; dφ and dη are the differences of the two light quarks in φ and η; dR(qq) is defined
as

√
dφ + dη; finally Ptq is the transverse momentum of one q jet in the qq system.

To train the Neural Networks to identify qq in ZH, WH and VBF+H, special attention is paid
to reject events that could have three or more b quarks. In case of ZH, this particularly important
because when both Z and H decay into b quark pair and when only two jets are b tagged, it is hard
to say the two untagged jets are from truly from Z.

The performance of the three Neural Networks are shown in Figure 8 and in Figure 9.
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7 Neural Network Training

For the Higgs analysis, a multivariate discriminant has the ability to combine the information from
several variables. This improves the ability to separate a Higgs signal from background events far
greater than a standard cuts analysis. The TMVA package [14] allows one to evaluate several multi-
variate classifiers. For this analysis, we considered an Artificial Neural Network 6.

A dedicated Neural Net was trained for each process, WH, ZH and VBF. Because the proceses WH
and ZH are similar we continue to identify them as VH, although the Neural Net was trained separately.
The output of this first Neural Net was used as the input of a second one (SuperDiscriminant - SD).
We used the output of the last Neural Net for the analysis.

As the background is dominated by QCD, the 1-Tag background, weighted by the TRF, is used
as the background sample for the NN.

The Neural Net was trained at three target Higgs masses; 100 GeV, 120 GeV and 140 GeV. These
three trained neural nets were used to search for a Higgs boson between 100 GeV to 150 GeV. For each
mass point, the closest trained neural net was used as follows:

• 100 GeV Higgs used Neural Net trained on 100 GeV Higgs sample

• 105,110,115,120,125,130 GeV Higgs used Neural Net trained on 120 GeV Higgs sample

• 135,140,145,150 GeV Higgs used Neural Net trained on 140 GeV Higgs sample

For all Neural Nets the same window cut was applied:

Signal Window : 75 < M(bb̄) < 175GeV (5)

M(qq̄) > 50GeV

After experimenting with combinations of variables for the training, we decided on the following
set of variables for the VH training:

• Mass of the two b-tagged jets (M(bb))

• Mass of the two non b-tagged jets (M(qq))

• cosine of the leading-jet scattering angle in the 4-jet rest-frame (cos(θ3))

• χ variable [3]

• Jet Width Tower of leading non b-jet

• Jet Width Track of leading non b-jet

• Jet Width Tower of second leading non b-jet

• Jet Width Track of second leading non b-jet

• Aplanarity, Sphericity and Centrality

• ∆R of the two b-tagged jets

• ∆R of the two non b-tagged jets

• Difference between the two φ angles of the two b-tagged jets

• Difference between the two φ angles of the two non b-tagged jets

6We followed TMVAs recommendation of the Multi-layer Perceptron algorithm for the artificial neural network
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• Neural Network distribution for the identification of WH non b-jet

• Neural Network distribution for the identification of ZH non b-jet

and the following set of variables for VBF training:

• Mass of the two b-tagged jets (M(bb))

• Mass of the two non b-tagged jets (M(qq))

• χ variable [3]

• Jet Width Tower of leading non b-jet

• Jet Width Track of leading non b-jet

• Jet Width Tower of second leading non b-jet

• Jet Width Track of second leading non b-jet

• η of leading non b-jet

• η of second leading non b-jet

• Difference between the two η angles of the two b-tagged jets

• Invariant mass of four jets system

• Sum of momentum Z component of the four jets system

• Sphericity and Centrality

• ∆R of the two b-tagged jets

• ∆R of the two non b-tagged jets

• Difference between the two φ angles of the two b-tagged jets

• Neural Network distribution for the identification of VBF non b-jet

The definition for cos(θ3) can be found in [15]

The χ variable is defined as [3]:

χ = Min(χW , χZ) (6)

χW/Z =
√

(MW/Z − Mqq)2 + (MH − Mbb)2 (7)

For the SuperDiscriminant (SD) neural net training the list of training variables is:

• Neural Net distribution for WH

• Neural Net distribution for ZH

• Neural Net distribution for VBF

Figures 10-17 show the signal & background plots for the selected variables for the VH and VBF
channels and the figure 18
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Figure 10: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction and the black triangles are the data for the Higgs signal region.
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Figure 11: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction and the black triangles are the data for the Higgs signal region.
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Figure 12: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction and the black triangles are the data for the Higgs signal region.
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Figure 13: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction and the black triangles are the data for the Higgs signal region.
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Figure 14: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction and the black triangles are the data for the Higgs signal region.
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Figure 15: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction and the black triangles are the data for the Higgs signal region.
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Figure 16: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction and the black triangles are the data for the Higgs signal region.
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Figure 17: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction and the black triangles are the data for the Higgs signal region.
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Figure 18: The SS TRF prediction of the training variables for SuperDiscriminat. The black his-
tograms are the TRF prediction and the black triangles are the data for the Higgs signal region.
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7.1 Neural Network Output Tuning

The Super Discriminant Neural Network output presents a disagreement between Data and TRF
prediction in the Higgs Signal Region. We also see a similar mismodelling for the VBF Neural Network
output.

We decided to correct the VBF Neural Network Output (NN VBF) so to improve also the SD
Neural Network Output (NN SD). The idea is to apply a correction function measured in a control
region to the Signal Region.

The two control region we considered are:

• Tag Region

• NJet6 Region

In the two control region is present the same mis-modelling we see in the Signal Region, so we
assume that they have the same source. The correction function is the fit of the ratio between Data and
TRF Prediction in a control region and we use that fit values to reweight the TRF events, assuming
that the same correction works also in Signal Region, we apply it in the Signal Region, if the NN VBF
present an improvement we also should see an improvement in NN SD.

We calculated the TRF correction function for all three mass point used for training: 100, 120
and 140GeV and for the two bjet categories: SS and SJ in the two control regions. To choose which
correction to use, we applied each correction function fit to the TRF predict events in the Control
Region (CTRL) and we measured the χ2/NDF and the Kolmogorov-Smirnov value of corrected TRF
prediction to Data. The function with best values is selected and we used the other one to estimate
the systematic uncertainty.

After examining all results, we decided to use the Tag Correction Function to correct the Neural
Network Output for all samples and the NJet6 one for the systematics uncertainties.
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8 Systematics

We consider systematics which affect the shapes and normalisation of the Neural Net distributions for
the signal and background. The systematics which are considered are:

• QCD Modelling, which is divided into three categories:

– TRF interpolation uncertainty

– mqq tuning Uncertainty

– VBF-NN tuning uncertainty

• Jet Width

• Jet Energy Scale

• Initial and final state radiation (ISR/FSR).

• Luminosity

• b-tag scale factor

• Parton distribution uncertainties

• cross-section uncertainties

The nominal background prediction uses the TRF derived from the Tag region which is interpo-
lated into the signal region. The systematic error for this interpolation is taken from the background
prediction using the TRF derived from the Ctrl region. The difference between these two background
shapes is used as the interpolation shape systematic.

Section 5.1 discussed the tuning required for TRF prediction of mqq . The tuning used functions
derived from the Tag region and Ctrl region. The nominal correction used the Tag derived tuning
function. As a measure of the systematic error, the Ctrl region tuning function is used. The
difference in the neural net output shape from using the two tuning functions is used as the mqq

tuning uncertainty shape systematic.
The VBF-NN requires additional tuning to correct the TRF prediction, akin to the mqq tuning.

The VBF-NN tuning functions are measured in the Tag and the SixJet control region. The Tag

region tuning is used for the nominal QCD background prediction. The SixJet correction function
is used to measure the systematic uncertainty. The difference of the Higgs-NN shape from using the
two VBF-NN tuning functions is used as the VBF-NN tuning uncertainty shape systematic.

The Jet Energy Scale affects the shape of the Jet Et related quantities. The training variables
which are affected most are Mbb and Mqq. Although the Jet Energy Scale systematics affects the Mbb

and Mqq distributions, the neural network shape is less affected. The Jet Shape Systematic also affect
the acceptance on account of the SumEt>220.0 GeV event selection cut, which gives rise to a ±9%
rate systematic error in addition to the shape errors.

The jet-width uncertainty is applied by shifting the jet-width value by ±1σ and propagating this
change through the NN which results in a change in shape of the Neural Network.

The initial and final state radiation systematics also include a shape systematic as well as a ±3%
rate systematic.

Uncertainties on the cross-section for all MC samples are applied: 7% for tt̄ and single-top, 6%
for diboson, 50% for W+HF and Z+Jets, 5% for WH/ZH and 10% for VBF. Other rate systematics
include a ±2% PDF rate systematic and the 6% luminosity uncertainty. For B-Tagging, all MC
SecVtx-SecVtx events have to apply a scale factor of 0.902 with a 6.7% rate systematic. For the
SecVtx-JetProb events, the MC scale factor is 0.655 with a 6.4% rate systematic. Finally there is a
3.55% rate systematic for all signal samples according to our trigger study.

Table 3 summarises all the rate uncertainties & shape systematics which are applied to calculate
the limit.
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Table 3: Summary of all Systematic Uncertainties used to calculate the limit

TRF (QCD) Uncertainties
TRF Interpolation Shape
TRF mqq Tuning Shape
TRF VBF-NN tuning Shape

Higgs and Non-QCD Uncertainties
Luminosity ± 6% Rate
Trigger ± 3.55% Rate
SecVtx+SecVtx ± 7.1% Rate
SecVtx+JetProb ± 6.4% Rate
Jet Energy Correction ± 9% Rate

Shape
Jet Width Shape

Higgs and Non-QCD cross-section uncertainties
tt̄ & single-top ± 7% Rate
Diboson (WW/WZ/ZZ) ± 6% Rate
W+HF & Z+Jets ± 50% Rate
WH/ZH ± 5% Rate
VBF ± 10% Rate

Higgs Uncertainties
PDF ± 2% Rate
ISR/FSR ± 3%

Shape
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(a) MH100-SS

Figure 19: Higgs-NN distribution for mH =100 GeV/c2. The plot is from the SS b-tag category.
All backgrounds are stacked and the superimposed Higgs signal is scaled by x1000. As the QCD
background is large, plots of the DATA-QCD are plotted with stacked plot of non-QCD background
and QCD systematic.

9 Unblinded Signal Region

Figures 19-21 show the Higgs-NN output for Higgs boson masses of 100, 120 and 140 GeV/c2for the
SS b-tag category 7. The histograms show the data, a stacked plot of background and the Higgs signal
scaled by x1000. Below each histogram is QCD(TRF) subtracted data and background. Higgs bosons
of 105, 110, 115, 125, 130 GeV/c2use the same NN as Fig. 20 and share the same data and background
prediction; only the signal template differs. Similarly, Higgs bosons of 135,145,150 GeV/c2use the same
NN as Fig. 21 and only differ by using a different Higgs signal template. All three NN show no evidence
of a Higgs boson signal and no disagreement between the background and observed data

7The equivalent plots for the SJ b-tag category can be found at the public web page: http://www-
cdf.fnal.gov/physics/new/hdg/Results files/results/vhqqbb 120307
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Figure 20: Higgs-NN distribution for mH =120 GeV/c2. The plot is from the SS b-tag category.
All backgrounds are stacked and the superimposed Higgs signal is scaled by x1000. As the QCD
background is large, plots of the DATA-QCD are plotted with stacked plot of non-QCD background
and QCD systematic.

SS channel]-1CDF Run II Preliminary [9.45fb
All Hadronic Higgs Search

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
ve

nt
s

0

2000

4000

6000

8000

10000
QCD QCD Systematic WH X 1000 ZH X 1000

VBF X 1000 tt Z+Jet Diboson

Single-Top W+HF DATA

NN(SS,MH140)
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
AT

A
-Q

C
D

   
 

-100

0

100

200

300

400

500

(a) MH140-SS

Figure 21: Higgs-NN distribution for mH =140 GeV/c2. The plot is from the SS b-tag category.
All backgrounds are stacked and the superimposed Higgs signal is scaled by x1000. As the QCD
background is large, plots of the DATA-QCD are plotted with stacked plot of non-QCD background
and QCD systematic.
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Table 4: Expected and observed 95% CL upper limits for the combined SS and SJ channels using
9.45 fb−1 of pp̄ data collected by the CDF detector. The limits are normalised to the expected Higgs
cross-section.

Higgs mass −2σ −1σ Median +1σ +2σ Observed
100 1.4 3.6 7.7 14.5 24.4 10.9
105 1.8 3.8 7.5 13.6 22.3 7.5
110 2.0 4.0 7.6 13.2 21.7 7.0
115 2.3 4.4 8.3 14.5 23.4 7.2
120 2.4 4.6 8.9 15.6 25.3 8.4
125 2.8 5.7 11.0 19.5 31.6 9.0
130 3.4 7.1 13.8 24.3 39.5 13.2
135 5.3 10.8 19.5 32.2 49.6 21.2
140 7.3 14.3 25.8 42.7 66.1 26.2
145 10.2 20.4 36.7 60.5 93.4 35.1
150 17.1 32.5 58.7 98.2 152.0 64.6

Table 5: Expected and observed 95% CL upper limits for the SS channel using 9.45 fb−1 of pp̄ data
collected by the CDF detector. The limits are normalised to the expected Higgs cross-section.

Higgs mass −2σ −1σ Median +1σ +2σ Observed
100 3.6 6.7 10.9 16.6 23.7 15.9
105 4.3 6.7 10.1 14.9 21.2 8.2
110 4.6 6.7 9.8 14.2 20.1 8.3
115 4.8 7.3 10.8 15.5 21.7 8.9
120 5.3 7.8 11.6 16.8 23.6 10.2
125 6.4 9.5 14.0 20.4 29.0 11.6
130 8.2 12.2 18.3 26.8 38.1 14.6
135 12.4 18.4 27.3 39.5 55.6 25.6
140 17.0 24.8 36.5 52.7 74.1 34.8
145 23.9 35.1 51.6 74.1 103.9 50.9
150 39.6 57.7 84.3 121.0 167.6 84.1

10 Results

Figures 19-21 show no evidence of a Higgs boson. We calculate upper limits on the excluded Higgs
boson cross-section at the 95% confidence level (CL). Table 4 has the limits from the combination of
the SS and SJ b-tagging category. The limits for the SS and SJ are in tables 5 and 6, respectively. All
the limits in the tables are normalised to the expected Higgs signal cross-section.
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Figure 22: Limits for combined SS & SJ channels: The expected & observed limits are plotted as a
function of the Higgs mass. The limits are normalised to the expected Higgs cross-section.

Table 6: Expected and observed 95% CL upper limits for the SJ channel using 9.45 fb−1 of pp̄ data
collected by the CDF detector. The limits are normalised to the expected Higgs cross-section.

Higgs mass −2σ −1σ Median +1σ +2σ Observed
100 7.8 10.9 15.5 22.0 30.6 12.2
105 8.7 12.2 17.3 24.5 34.2 15.0
110 8.4 11.7 16.7 23.5 32.5 13.8
115 9.3 12.7 17.9 25.2 35.1 14.7
120 10.3 14.3 20.3 28.9 40.3 15.4
125 12.7 17.6 25.1 35.5 49.3 19.4
130 16.2 22.4 32.2 46.1 65.1 24.7
135 18.6 25.6 36.2 50.8 70.2 26.1
140 24.1 32.9 46.3 65.3 90.7 33.9
145 34.8 47.6 67.0 95.2 130.6 48.0
150 56.0 76.1 104.8 142.9 185.6 78.2
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Figure 23: Limits for the SS channel: The expected & observed limits are plotted as a function of the
Higgs mass. The limits are normalised to the expected Higgs cross-section.
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Figure 24: Limits for the SJ channel: The expected & observed limits are plotted as a function of the
Higgs mass. The limits are normalised to the expected Higgs cross-section.
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11 Conclusions

We have presented the search for the Standard Model Higgs boson in the all hadronic mode using 9.45
fb−1 of data collected by the CDF detector. A Neural Network was used to separate the background
events from the signal. As the presence of a Higgs signal was not observed, 95% confidence limits were
calculated. The median expected limit for Higgs mass 120 GeV is 8.9 while the observed limit is 8.4.

The improvements to the analysis with respect to the previous 4 fb−1 version are:

• increase of analyzed data from 4 fb−1 to 9.45 fb−1

• improvements to the b-jet energy resolution

• new jet-width measurement

• improvements to QCD modeling (TRF).

• unification of VH and VBF signal regions

• more variables used in NN: result of improved TRF modeling

• improved NN training

• tuning of TRF NN output using information from control regions.
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12 Appendix

12.1 Z+jets Generator Level Filter

The large cross-section for Z+jets would produce an extremely large number of events; of which many
would be rejected by the trigger. A filter was devised to select events which were likely to pass the
trigger.

• At generator level, select events with ≥ 1 b or c parton.

• ≥ 3 jets with ET > 5 GeV. The jets were defined by cone sizes of 0.4, 0.7 and 1.0.

• The Sum- ET for the 0.4, 0.7 and 1.0 jets are calculated. Accept the event if any of these sums
≥ 60 GeV
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